产品展示
  • 铃木吉姆尼 越野全车贴 车身改装拉花 JIMNY 车门星星贴纸 装饰贴
  • 征服者通用汽车改装装饰用品车轮轮圈贴轮毂反光贴个性反光条贴纸
  • 汽车装饰贴纸 车贴搞笑 卡通可爱划痕车门贴 亲嘴小破孩个性创意
  • 骆驼蓄电池80D26适配索纳塔凯美瑞汉兰达RAV4专用汽车电瓶70AH
  • 适合V3菱悦低音炮 补形箱 菱帅、蓝瑟  12寸 汽车音响 10寸重低音
联系方式

邮箱:admin@aa.com

电话:020-123456789

传真:020-123456789

新闻中心

Webb space telescope just found something unprecedented in the Orion Nebula

2024-05-18 12:17:21      点击:652

Astronomers have detected for the first time in space a carbon molecule thought to be a crucial ingredient for all known life.

A team of scientists found this Holy Grail compound in the Orion Nebula, a baby star nursery about 1,350 light-years away. That may seem absurdly far, but it's actually the closest large star-forming region to Earth.

Using the James Webb Space Telescope, a preeminent cosmic observatory led by NASA and the European and Canadian space agencies, the researchers not only captured a vibrant new picture of the celestial region — blowing the socks off Hubble's version — but found the new molecule lurking in a young star system, known as d203-506. This system has a protoplanetary disk, a sort of Lazy Susan of gas and dust rotating around the core.

Astronomers are on a quest to find signals of carbon compounds in the greater universe because this chemistry is at the root of all life, at least as far as we understand it on Earth. Coincidentally, ancient Mayan culture referred to the Orion Nebula as the cosmic fire of creation.

SEE ALSO:James Webb captures evidence of carbon dioxide in distant planet's atmosphere

The mysterious signal turned out to be methyl cation, a molecule that until this week was relatively unknown to the layperson. With the announcement, NASA went so far as to provide a pronunciation guide for the term. (For the record, it sounds like "CAT-eye-on," not the last two syllables of "vacation.") Organic chemists say methyl cation assists with the formation of more complex carbon-based molecules.

Since the 1970s, scientists have predicted this substance was a missing link between simple molecules and more complex organic molecules. But direct evidence of its existence in space had eluded them — until now. NASA likens the role of methyl cation to a train station, where a molecule can remain for a time before routing in one of many different directions to react with other molecules.

Mashable Light SpeedWant more out-of-this world tech, space and science stories?Sign up for Mashable's weekly Light Speed newsletter.By signing up you agree to our Terms of Use and Privacy Policy.Thanks for signing up!

"This detection not only validates the incredible sensitivity of Webb but also confirms the postulated central importance of (methyl cation) in interstellar chemistry," said Marie-Aline Martin-Drumel, one of the coauthors on the new study, in a statement.

Zooming in on Orion NebulaThe molecule, which was detected around a small red dwarf star, comes from a region with high levels of ultraviolet light.Credit: ESA / Webb / NASA / CSA / M. Zamani (ESA/Webb) / PDRs4ALL ERS Team

The discovery was published in the journal Natureon Monday, June 26, 2023.

Want more scienceand tech news delivered straight to your inbox? Sign up for Mashable's Light Speed newslettertoday.


Related Stories
  • This Saturn moon gushes water beyond scientists' wildest dreams
  • The Webb telescope just took the deepest photo of the universe ever
  • Webb telescope flexes its muscle with this deep, deep view into space
  • What the Webb Telescope can tell us about the TRAPPIST planets
  • Spectacular Webb telescope image shows a stellar death like never before
NASA likens the role of methyl cation to a train station, where a molecule can remain for a time before routing in one of many different directions to react with other molecules.

The molecule was found in an enormous cloud of dust and gas that hosts a multitude of stars under construction. At its center are four massive stars collectively known as the Trapezium because they are arranged in a trapezoidal shape. The molecule, which was detected around a small red dwarf star, comes from a region with high levels of ultraviolet light from the Trapezium.

Scientists speculate that most planet-forming disks experience intense ultraviolet radiation for a time, because stars tend to form in groups that include massive UV-producing stars. The odd plot twist, however, is that UV radiation tends to destroy complex organic molecules. The research team thinks in this instance the radiation might be what's providing the needed energy for it to form.

Despite finding this key molecule for life, the team noted the absence of another more well-known ingredient from the star system: water. This leaves more questions about ultraviolet radiation for astronomers, said Olivier Berné, lead author of the study, in a statement.

"It might actually play a critical role in the early chemical stages of the origins of life," he said.

NASA asks: Can anyone help us get our Mars samples back?
There's a library on the moon now. It might last billions of years.